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This paper mainly deals with the identi"cation of structural modal parameters, from
output accelerometers only, using a vector autoregressive moving average (VARMA(p, q ))
model method. The problem of determining the order p of the AR part, or equivalently the
number of modes in a frequency band, is also examined using a combination of the
multivariate minimum description length (MDL) criterion and an overdetermined
instrumental variable sequence. The AR coe$cients are then obtained from this
instrumental variable sequence. The companion matrix is formed and the modal parameters
of the vibrating system deduced. Numerical and experimental results are treated to show the
e!ectiveness of this new procedure.
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1. INTRODUCTION

Modal parameter identi"cation is the procedure used to identify parameters of the
modal model describing the dynamic properties of a mechanical system in vibration. The
methods for modal parameter identi"cation can be categorized into two groups: frequency
domain methods and time domain methods. The frequency domain analysis has been
widely used for many years and has been proved to be e$cient in many cases. This
frequency method uses the fast Fourier transform (FFT) and curve "tting but is limited by
the problem of leakage, interference and bias. To avoid the limitation of frequency domain
analysis, time domain methods have been developed. These methods have generally been
used for identi"cation in the form of impulse or free decay responses, which are then
considered as weighted expansions of participating modes in the vibration. These time
domain methods have demonstrated the capability of identifying very closely spaced or
pseudo-repeated frequencies and heavy damping ratios. Another advantage of these time
domain methods is that they do not need to perform any domain change: they do not use
FFT to estimate modal parameters or to apply any time window and problems such as
leakage, bias and variance are avoided. This leads to good estimated modal parameters,
including short data records. The principal time domain methods are the Ibrahim time
domain method [1] and the eigensystem realization method of Juang [2]. The Ibrahim time
domain method uses a set of free decay vibration measurements in a single analysis to
identify simultaneously all parameters of the excited modes in a test. The eigensystem
realization algorithm of Juang [2] uses concepts of the controllability theory and impulse
responses. These methods consider both input and output data for the identi"cation of
modal parameters.

In this paper, a new method is presented to identify the mode shapes as well as the natural
frequencies and damping ratios of a vibrating structure on the basis of a multivariate
0022-460X/01/320187#17 $35.00/0 ( 2001 Academic Press
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ARMA process [3}6]; the mathematical model method uses an unmeasured white noise as
excitation and treats random responses as the time series of a VARMA(p, q) process. The
identi"cation of modal parameters is realized here in the time domain from accelerometers
output only. Using a VARMA(p, q ) representation, we estimate the autoregressive AR
coe$cients and form the companion matrix. The spectral decomposition of this matrix
brings us to the estimation of modal parameters. The "rst step in the estimation of AR
coe$cients is the determination of the number of these coe$cients. This number is p and is
also the order of the multivariate AR part. Once p has been estimated, the number of modes
in a frequency band is derived. Note that in a mechanical structure, the number n of modes
in a frequency band is related to the order p of the AR part and to the number of
accelerometers m by the well known relation p"2n/m.

Several information theoretical criteria have been proposed for this model order selection
task. Akaike [7, 8] has provided two criteria. His "rst criterion is the "nal prediction error
(FPE) criterion and selects the order so that the average error variance for a one-step
prediction is minimized. Akaike also suggested another selection criterion using
a maximum likelihood approach to derive a criterion, termed the Akaike information
criterion (AIC). The AIC determines the model order by minimizing an information
theoretical function. FPE and AIC are asymptotically equivalent, but do not yield
consistent estimates of the model order; the result is a tendency to overestimate the order as
the data record length increases [9]. In response to this, another e!ective criterion (the
minimum description length (MDL) criterion) is proposed by Schwarz [10] and Rissanen
[11]. The MDL criterion, also called the Bayesian information criterion (BIC), uses
a penalty function which provides consistent estimation of the model order. All these
methods are only applicable to scalar processes and a generalization to multivariate
processes is established in this paper.

Using a combination of an overdetermined instrumental variable scheme [12] and the
multivariate MDL criterion a new method for AR order determination of
a vector-autoregressive moving average or VARMA(p,q) process is proposed. To determine
p, the order of the multivariate AR part, an overdetermined instrumental variable product
moment matrix is de"ned. Once p has been estimated, the AR coe$cients are derived from
the optimization of this MDL criterion.

This paper is organized as follows. A model of a vibrating structure and its VARMA
formulation is given in section 2. The determination of the order p using the multivariate
minimum description length is described in section 3. The estimation of AR coe$cients is
also treated in this section. The e!ectiveness of the method for model order selection, and
modal parameter estimation, from output accelerometers only, is shown in section 4 with
a numerical example and mechanical structures in laboratory. This paper is summarized
brie#y in section 5.

2. MODELLING A VIBRATING SYSTEM AND ITS VARMA REPRESENTATION

Consider a structure excited by an unknown random Gaussian force. The objective is to
determine the number of modes excited in a frequency band from the time response
delivered by the output of m sensors (accelerometers) and the modal parameters of this
structure.

For an n-degree-of-freedom vibratory system, the equation of motion can be expressed as

M
0
nG (t)#C

0
n0 (t)#K

0
n (t)"g (t), (1)
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where M
0
, C

0
and K

0
are the system mass, damping and sti!ness matrices (n]n)

respectively; nG (t), n0 (t) and n(t) are (n]1) vectors of acceleration, velocity and displacement
and g (t) the (n]1) unmeasured excitation vector, which is a random Gaussian force. A state
space model can be formed in lieu of the model given by equation (1) as

x5 (t )"A3 x (t)#B3 g (t), (2)

where x(t ) is the 2n dimensional state vector

x (t)"C
n(t)

n0 (t )D (3)

and A3 , B3 are the (2n]2n), (2n]n) matrices

A3 "C
0 I

!M~1
0

K
0

!M~1
0

C
0
D ; B3 "C

0

M~1
0
D . (4)

The response of the dynamic system is measured by the m output quantities in the output
y(t) using accelerometers. An (m]1) vector output equation called the observation
equation can be written as

y (t)"H
a
nG (t)"H

a
M~1

0
[!K

0
n (t)!C

0
n0 (t)#g (t)] (5)

or

y (t)"Hx(t)#Dg (t), (6)

where H
a
is the output in#uence matrix (m]n) for acceleration. This matrix speci"es which

points of the system are observed from accelerometers. H is the (m]2n) output in#uence
matrix for the state vector x (t)

H"H
a
M~1

0
[!K

0
!C

0
] (7)

and D is an (m]n) direct transmission matrix

D"H
a
M~1

0
. (8)

Equations (2) and (6) constitute a continuous time state-space model of a dynamic system.
Note that the order of the system 2n is the dimension of the state matrix A3 . The dynamic
characteristics of the system governed by equation (1) are fully represented by the system
matrix A3 . In other words, if modal decomposition is desired, the modal parameters can be
obtained by solving the following eigenvalue problem:

[kJ
i
I!A3 ]X3

i
"0, (9)

where kJ
i
1s are the eigenvalues and X3

i
's are the eigenvectors of A3 . Note that the eigenvectors

corresponding to the measurements are H
a
X3

i
.

After sampling with constant period Dt and transformation of the 2n "rst order
di!erential equations (2) and (6) into a discrete time equation, the following discrete time
state-space model and the discrete time observation equation are obtained:

x
t`1

"Fx
t
#m

t
, (10)

y
t
"Hx

t
#Dg

t
, (11)
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where x
t
represents the discrete unobserved state vector of dimension 2n; F"eA3 Dt is the

(2n]2n) discrete time state-space matrix or discrete time transition matrix and m
t
is given by

m
t
"P

Dt

0

eA3 s B3 g (t!s) ds. (12)

The excitation g
t
is a random process and is not constant over the sampling period Dt, so m

t
cannot be obtained directly by integration of equation (11). A method to obtain m

t
is

described in reference [13].
The interest here is the mixed vector (or multivariate) autoregressive moving average

representation for the My
t
N process. Consider the m-dimensional stationary processes y

t
with

VARMA (p, q) representation [2}6]

y
t
"

p
+
i/1

A
i
y
t~i

#

q
+
j/0

B
j
u
t~j

, (13)

where y
t
is the discrete observation vector and u

t
is a white Gaussian noise with zero mean

and unknown covariance matrix Q
u
"EMu

t
uT
t
N. This equation contains the AR part with

AR matrix coe$cients A
i
and the MA part with MA matrix coe$cients B

j
. The order of the

autoregressive part is p, which is theoretically p"2n/m. The order of the MA part is q.
The modal parameters of the vibrating system are completely characterized by the

eigenvalues and eigenvectors of the companion matrix A [2, 3] containing the AR
coe$cients of the VARMA representation (13).

A"

0 I 0 . 0

0 0 I . 0

. . . . .

0 0 0 . I

A
P

A
P~1

. . A
1

. (14)

The eigenvalues kJ
i
of the state matrix A3 and the eigenvalues k

i
of the companion matrix

A have the following relationship:

k
i
"ekJ

i
Dt . (15)

The eigenvectors are the same for the continuous and discrete time: H
a
X3

i
. Therefore, the

global modal parameters, the natural frequencies f
i
and damping ratios c

i
of the vibrating

system can be determined by [3]

f
i
"

1

2nDtS
[ln (k

i
k*
i
)]2

4
#Ccos~1A

k
i
#k*

i
2Jk

i
k*
i
BD

2
, (16)

c
i
"S

[ln (k
i
k*
i
)]2

Cln (k
*
k*
i
)]2#4 Ccos~1A

k
i
#k*

i
2Jk

i
k*
i
BD

2 , (17)

for i"1, 2,2,n.
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The eigenvalue decomposition of the companion matrix give the modal parameters of the
vibrating system. In this paper, a procedure is proposed to determine the number of AR
coe$cients A

i
, from accelerometer outputs only, these AR coe$cients and then the modal

parameters and mode shapes of the vibrating structure.

3. DETERMINATION OF THE NUMBER OF AR COEFFICIENTS
BY THE MULTIVARIATE MDL CRITERION

Since the true orders p and q are unknown, consider the general case of equation (13) with
(p, q ) replaced by unknown (p@, q@). Equation (13) for t"0,2,N!1 is developed and the
matrix system

[[A
0
]![A

1
]!2![Ap@]]

y
0

y
1

y
2

. yp@ yp@#1 . y
N~1

0 y
0

y
1

. yp@!1 yp@ . y
N~2

0 0 y
0

. yp@!2 yp@!1 . y
N~3

. . . . . . . .

0 0 0 . y
0

y
1

. y
N~1~p@

"[[B
0
][B

1
]2 [Bq@]]

u
0

u
1

u
2

. up@ up@#1 . u
N~1

0 u
0

u
1

. up@~1
up@ . u

N~2
0 0 u

0
. up@~2

up@~1
. u

N~3
. . . . . . . .

0 0 0 . up@~q
up@~q@`1

. u
N~1~q@

(18)

is formed with N the data length and [A
0
]"[I

m
].

The previous system can be written as:

Wp@ Yp@"Xp@ (19)

with Yp@ the m (p@#1)]N matrix of data, Xp@ the (m]N) matrix of coe$cients MA and
white Gaussian noise u

t
and Wp@ the m]m (p@#1) matrix which contains the AR parameters:

Wp@"[A
0
A

1
2Ap@]. (20)

In order to develop a multivariate MDL criterion, an extended instrumental variable
matrix [12] Z

k
of dimension m(k#1)]N is introduced:

Z
k
"

z
0

z
1

2 z
k

2 z
N~1

0 z
0

2 z
k~1

2 z
N~2

F F } F F }

0 2 0 z
0

2 z
N~k~1

(21)

in which z
i

is a vectorial instrumental variable sequence. The instrumental variable
sequence is highly correlated with the observed sequence y

i
but completely uncorrelated
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with the noise. If the case of k"p@ is considered, then

lim
N?=

1

N
Zp@ YTp@"R; lim

N?=

1

N
Zp@ XTp@"0. (22)

Note that the dimension of Z
k
YTp@ is m(k#1)]m(p@#1) and increasing the number of rows

in Z
k
YTp@ implies the use of more information. An overdetermined instrumental variable

method is then preferable. Pre-multiplying equation (19) by (1/N )ZT
k

gives

1

N
Wp@ Yp@ZT

k
"

1

N
Xp@ ZT

k
(23)

Putting Wp@"
1

N
Yp@ ZT

k
matrix m (p@#1)]m (k#1) and V

k
"

1

N
Xp@ ZT

k
matrix m]m(k#1)

gives

Wp@ Wp@"V
k
. (24)

Furthermore, the m (p@#1)]m (p@#1) overdetermined instrumental variable product
moment matrix can be de"ned by

Cp@"Wp@ WTp@"
1

N2
Yp@ ZT

k
Z

k
YTp@ . (25)

Note that Cp@ is a symmetric positive semide"nite matrix and both the matrix Cp@ and the
multivariate minimum description length (MDL) criterion give the order p of the AR part of
the VARMA process. Following Schwarz [10] and Rissanen [11], the MDL criterion is
equal to the sum of the log-likelihood function of the maximum likelihood estimator of the
model parameters and a function that penalizes the use of a large number of model
parameters. In the multivariate case, the number of free adjusted parameters in the AR part
is m2 (p@#1). Denote V

k
"[v

1
, v

2
,2,v

m(k`1)
].

This matrix consists of m(k#1) independent, m-dimensional, normal random vectors v
i
,

with zero mean and unknown covariance matrix Q
v
"E[v

i
vT
i
]. Thus, the MDL criterion is

given by

J
MDL

(p@)"!log f (v
1
,2, v

m(k`1)
)#

1

2
m2 (p@#1) log (m (k#1)), (26)

where f (v
1
,2,v

m(k`1)
) denotes the probability density function of Mv

i
N. For a multivariate

normal model

f (v
1
,2,v

m(k`1)
)"(2n)!m2(k#1)/2]

1

det (Q
v
)m(k#1)/2 expA

1

2
tr (Q~1

7
Wp@ Cp@ WTp@)B. (27)

By substituting f (v
1
,2, v

m(k`1)
) into equation (26), J

MDL
(p@) reduces to

J
MDL

(p@,Wp@)"m2A
k#1

2 B log (2n)

#mA
k#1

2 B log (det (Q
v
))#

1

2
tr (Q~1

7
Wp@ Cp@ WTp@ )#

1

2
m2 (p@#1) log (m (k#1)). (28)
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For "xed p@, the matrix Q
v

that minimizes criterion (28) is Q
v
"Wp@ Cp@ WTp@ and the

minimum value of det (Q
v
) is obtained by the eigenvalue decomposition of Cp@

Cp@"[SK Se] C
K 0

0 eD C
STK

STe D , (29)

where K is the diagonal matrix containing the mp@ largest eigenvalues in decreasing order
and the columns of SK are the corresponding eigenvectors; e is the diagonal matrix which
contains the m smallest eigenvalues and the columns of Se are the corresponding
eigenvectors. Constraining Wp@ to be orthogonal, the choice of Wp@ that minimizes criterion
(28) is found to be the matrix of eigenvectors associated with the minimum eigenvalues of
Cp@ . With this choice, Wp@"STe and

Q
7
"STe [SK KSTK#SeeSTe ]Se"STe SKKSTK Se#STe Se eSTe Se . (30)

Since the eigenvectors are orthonormal Q
v
"e and det (Q

v
)"

m
<
i/1

e
i
, where e

i
are the

smallest eigenvalues of Cp@ (the diagonal elements of e). Substituting into equation (28) and
dropping all terms that do not depend on p@ or Wp@,

J
MDL

(p@)"mA
k#1

2 B logA
m
<
i/1

e
iB#

1

2
m2p@ log (m(k#1)). (31)

The Wp@ in the argument of J
MDL

has been dropped, since the explicit Wp@ dependence is

suppressed; it has been incorporated into the product
m
<
i/1

e
i
term. Multiplying both sides of

equation (31) by 2/m (k#1) and combining terms gives

J
MDL

(p@)
2

m (k#1)
"logA

m
<
i/1

e
i
m (k#1)mp@/(k#1)B. (32)

Since the function log (.) is a monotonically increasing function a di!erent criterion can be
formed that contains exactly the same information as J

MDL
(p@); the new criterion has its

minimum value at the same point as J
MDL

(p@). The new criterion chosen is

J
MDL

(p@)"A
m
<
i/1

e
iBm (k#1) mp@/(k#1) . (33)

Therefore, examining the m minimum eigenvalues of the overdetermined instrumental
variable product moment matrix Cp@ is equivalent to examining the m minimum singular
values of the matrix Wp@, for di!erent values of p@. Then the new multivariate minimum
description length criterion (33) can be formed and an abrupt change in this criterion can be
sought for di!erent values of p@ or equivalently J (p@)/J (p@!1) can be computed and search
its minimum sought. Hence, the method for multivariate AR order determination is to select
p@ associated with the minimum of the quotient J (p@)/J (p@!1).

There are several ways to choose the instruments and the matrix Z
k
satisfying conditions

(22). In this paper, only the special case where z
t
"y

t~h
is considered. Then, it can be seen

from equation (13) that h'q should be taken so that z
t
is highly correlated with y

t
but

completely uncorrelated with u
t
. For the selection of instruments di!erent values of h are
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considered. Selecting z
t
"y

t~h
gives

Wp@
1

N
Yp@ ZT

k
"

R< (h) R< (h#1) . R< (h#k)

R< (h!1) R< (h) . R< (h#k!1)

. . . .

R< (h!p@) R< (h!p@#1) . R< (h#k!p@)

, (34)

where R< (i)'s are the sample covariance matrices (m]m) of y
t
given by

R< (i)"
1

N

N~1
+
t/i

y
t
yT
t~i

, i*0 (35)

and R< (!i)"R< (i)T.
It is important to note that this minimization problem under constraints gives

Wp@"STe (36)

So, from this relation the AR coe$cients can be determined, the companion matrix (14)
formed and the modal parameters of the vibrating system extracted. This method to obtain
AR coe$cients is called the Overdetermined Instrumental Variable method (ODIV
method). A numerical example and tests in laboratory are now presented.

4. EXAMPLES

4.1. A NUMERICAL EXAMPLE

The procedure for multivariate AR order determination and modal parameter estimation
is now applied to an elementary system of three degrees of freedom constituted of masses
and springs. This system is excited by a random force and corresponds to the situation
where inputs cannot be measured. Only the responses are used. For the selection of the
instrumental variables z

t
"y

t~h
di!erent values of h have been considered and it has been

found that all these selections could give the satisfactory results of the product of the
m minimum eigenvalues of the overdetermined instrumental variable product moment
matrix Cp@ for di!erent values of p@. This is not surprising because the delayed output
y
t~h

with h somewhat smaller than the MA order q are weakly correlated with the MA part
given in equation (13); hence (22) holds approximately. In theory, all z

t
"y

t~h
with h'q

automatically satisfy (22) and are very good instruments. However, it should be noted that
the larger the h the weaker is y

t~h
correlated with y

t
and poor sample covariance matrices

RK (h) are obtained. Therefore, h should take a smaller value for a set of data, even if it is
smaller than the unknown MA order q.

In the numerical example, arbitrarily the matrix of masses M
0
"[0,13 0 0; 0 0, 2 0; 0 0 0,

15], the matrix of sti!ness K
0
"[30 !10 0; !10 15 !5; 0 !15 12] and the matrix of

damping C"0,1M
0
#0,01K

0
have been chosen. The number of data points is N"1000

and Dt"0,15 s. In this numerical example, all excited masses are considered and m"1 (one
assumed sensor), which corresponds to the scalar case. Using the MDL criterion developed
in the paper, or more precisely the quotient J (p@)/J (p@!1) for di!erent values of p@ and
h with h"5, statistics for one simulation run are shown in Table 1.

The minimum is obtained for p@"6. The order of the AR part is p"6. Thus, the number
of scalar AR coe$cients used to form the companion matrix is 6.



TABLE 1

Statistics of J(p@)/J(p@!1) with m"1 and h"5 for the simulated system

p@"1 p@"2 p@"3 p@"4 p@"5 p@"6 p@"7 p@"8 p@"9

k"7 0)72 0)34 1)07 0)56 1)22 0)048 0)19 6)27 1)84
k"9 0)71 0)25 1)06 0)64 1)14 0)050 1)04 2)06 1)74
k"11 0)69 0)26 1)11 0)61 1)21 0)12 0)47 2)17 2)68
k"13 0)64 0)25 1)12 0)59 1)16 0)12 1)13 1)53 2)54
k"15 0)66 0)24 1)09 0)59 1)14 0)13 1)08 1)59 2)85

TABLE 2

Statistics of J(p@)/J(p@!1) with m"3 and h"5 for the simulated system

p@"1 p@"2 p@"3 p@"4 p@"5 p@"6 p@"7 p@"8 p@"9

k"7 5]10~4 3]10~6 0)02 0)15 0)08 0)11 0)02 0)27 0)31
k"9 5]10~4 10~5 0)05 0)11 0)21 0)64 0)09 0)27 0)28
k"11 4]10~4 2]10~5 0)04 0)18 0)23 0)41 0)68 0)74 0)87
k"13 3]10~4 4]10~5 0)05 0)15 0)29 0)46 0)75 0)85 0)82
k"15 3]10~4 7]10~5 0)04 0)22 0)23 0)56 0)49 0)67 0)71

TABLE 3

Estimated natural frequencies and damping coe.cients of the simulated system of three
degrees of freedom with m"3 and h"5

f
1

f
2

f
3

c
1

c
2

c
3

k"7 0)957 1)558 2)495 0)042 0)056 0)084
k"9 0)956 1)556 2)499 0)041 0)057 0)080
k"11 0)955 1)557 2)501 0)042 0)057 0)082
k"13 0)953 1)558 2)516 0)040 0)058 0)070
k"15 0)952 1)560 2)508 0)042 0)058 0)086
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If the multivariate case with m"3 (three assumed sensors) and h"5 is considered,
statistics for one simulation run di!erent values of J (p@)/J (p@!1) are shown in Table 2.

The minimum is obtained for p@"2. The order of the multivariate AR part is p"2. So,
the number of AR matrices (3]3) used to form the companion matrix is 2. It is easy to verify
that in these two cases, p"2n/m.

Once the order has been estimated the AR coe$cients can be determined from (36) and the
companion matrix formed. The exact natural frequencies and damping coe$cients of the
simulated system are f

i
"M0)957; 1)564; 2)531N and c

i
"M0)038; 0)054; 0)082N. The estimated

natural frequencies, and damping coe$cients of this vibrating system, obtained from
multi-output data only, with m"3; h"5 and for di!erent values of k are given in Table 3.

This method gives satisfactory results in frequency and damping coe$cients estimation.
Figure 1 shows the mode shapes for the simulated system. The proposed method yields

accurate estimates of the mode shapes.
Note that these results are obtained from only one simulation run and improved results

can be obtained using the ensemble averaged over several independent realizations.
Improved results can also be obtained if the number of data points N increase.



Figure 1. Comparison of exact (continuous line) and identi"ed (dashed line) mode shapes for the simulated
system of masses and springs: (a) "rst mode; (b) second mode; (c) third mode.

Figure 2. Experimental X beam.
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4.2. A FIRST EXPERIMENTAL TEST: AN X BEAM

A "rst experimental test of three beams, called X beam, is treated (Figure 2). Three
random excitations are applied on points 1, 3 and 5. Three accelerometers on points 2 and



Figure 3. Frequency response of accelerometers: (a) on point 2; (b) on point 4; (c) on point 6.
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4 and 6 and only their time responses are used. The sampling frequency is 512Hz and 1500
data points are collected for each channel.

The purpose is to determine the order of the multivariate AR part (the number of AR
matrices to form the companion matrix), or equivalently, the number of modes in the
frequency band [0; 100Hz], the eigenfrequencies and damping coe$cients of this
mechanical system, using data from output accelerometers only. Figure 3 shows the power
spectral density function of accelerometers on points 2, 4 and 6 respectively. Note that the
power spectral density is a measurement of the signal energy at various frequencies of
interest.

It is impossible to determine the number of modes in the frequency band [0; 100Hz] by
counting the number of peaks of resonance from these power spectral density plots.

To determine the number of modes, consider the criterion presented in the paper, and
compute for di!erent values of p@ the quotient J (p@)/J (p@!1) and seek its minimum. The
value p of p@ for which the minimum is reached is related to the number of modes n by
p"2n/m. In this case, consider m"3; h"5 and the statistics shown in Table 4 are seen.

The minimum is always obtained for p@"2, the number of AR coe$cients is 2 and the
number of modes of the mechanical system is 3. This new criterion is very e!ective to
determine the number of modes from output accelerometers only.



TABLE 4

Statistics of J(p@)/J(p@!1) with m"3 and h"5 for the X beam

p@"1 p@"2 p@"3 p@"4 p@"5 p@"6 p@"7 p@"8 p@"9

k"7 2]10~5 10~8 4]10~4 0)08 0)06 0)15 0)06 0)12 0)16
k"8 10~5 10~8 3]10~4 0)09 0)11 0)47 0)26 0)38 0)41
k"9 10~5 10~8 2]10~4 0)14 0)10 0)56 0)91 0)94 0)88
k"10 10~5 10~8 10~4 0)19 0)12 0)63 0)83 0)87 0)96
k"11 10~5 10~8 8]10~5 0)16 0)14 0)61 0)70 0)71 0)73

TABLE 5

Estimated natural frequencies and damping coe.cients of the X beam with m"3 and h"5

f
1

f
2

f
3

c
1

c
2

c
3

k"7 34)33 35)76 36)74 0)75 0)80 0)20
k"9 34)34 35)75 36)73 0)80 0)86 0)18
k"11 34)34 35)75 36)74 0)81 0)87 0)19
k"13 34)32 35)73 36)74 0)85 0)87 0)20
k"15 34)31 35)69 36)74 0)94 0)90 0)17

Figure 4. Mode shapes for the X beam: (a) "rst mode; (b) second mode; (c) third mode.
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Figure 5. Experimental car door.

MODAL PARAMETER IDENTIFICATION 199
To obtain the modal parameters, determine the AR matrices coe$cients A
1

and A
2

from
equation (36), and form the companion matrix and its spectral decomposition. The
estimated eigenfrequencies, in Hz, and damping coe$cients, in percent, of this system,
obtained from multi-output data only, with m"3; h"5 and for di!erent values of k are
given in Table 5.

Figure 4 shows the mode shapes for the X beam using the time series procedure presented
here, from output accelerometers only, without measurement of the input force.

The method proposed here is very e!ective in determining modal parameters of vibrating
systems with close natural eigenfrequencies.

4.3. A SECOND EXPERIMENTAL TEST: A CAR DOOR

A second experimental test of a car door is treated (Figure 5). A random and unmeasured
excitation is applied on the car door and eight accelerometers are considered to estimate the
modal parameters of this mechanical system. The sampling frequency is 400 Hz and 4096
data points are collected for each channel.

The purpose is to determine the order of the multivariate AR part, or equivalently, the
number of modes in the frequency band [0; 200 Hz], the eigenfrequencies and damping



200 J. LARDIES AND N. LARBI
coe$cients of this car door from output accelerometers only. Figure 6 shows the power
spectral density function obtained from three di!erent accelerometers using an FFT. It is
impossible to determine the number of modes in the frequency band [0; 200Hz] by
counting the number of peaks of resonance from these power spectral density plots.

To determine the order p of the AR part consider the criterion presented in the paper;
compute for di!erent values of p@ the quotient J (p@)/J (p@!1) and search its minimum. Once
the order p has been obtained the number of modes in the frequency band [0; 200Hz] can
be determined. In this case, consider m"8; h"20 and p is an integer of (2n/m), which gives
the statistics shown in Table 6.
Figure 6. Frequency response from di!erent accelerometers.



Figure 6. Continued.

TABLE 6

Statistics of J(p@)/J(p@!1) with m"8 and h"20 for the car door

p@"2 p@"3 p@"4 p@"5 p@"6 p@"7 p@"8 p@"9

k"10 0)85 0)39 0)03 4)0]10~4 1)64 1)26 0)81 0)65
k"20 0)22 0)59 0)51 3)5]10~3 0)84 0)73 0)41 0)22
k"30 0)43 0)02 0)06 5)2]10~3 1)66 0)94 0)31 0)44
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The minimum value of J
MDL

(p@)/J
MDL

(p@!1) is always obtained for p@"5, the number of
AR coe$cients is 5 and the number of modes in the frequency band [0; 200Hz] of this car
door is 20. To form the companion matrix (14) 5 AR coe$cient matrices A

i
(8]8) are

required. The estimated eigenfrequencies, in Hz, and damping coe$cients, in percent, of this
car door, obtained from accelerometers only, with m"8; h"20 and for di!erent values of
k are given in Table 7.

The method proposed in this paper is e!ective in determining the order of the AR part,
the number of modes in a frequency band and modal parameters of this car door excited by
a random force. Similar results for these modal parameters are obtained using the frequency
domain by FRF where the excitation force or the input (sinus) is known and combined with
the accelerometers output or using the Stochastic Realization Algorithm (SRA) [2, 4]. Here,
only the outputs of the accelerometers are used without knowledge of the excitation.

5. CONCLUSION

A new approach for modal parameter estimation of a randomly excited structural system
with an unmeasured input is proposed in this paper. Initially, a time domain procedure for



TABLE 7

Estimated natural frequencies and damping coe.cients of the car door with the overdetermined
instrumental variable method (m"8; h"20 and k"20) and with SRA method

Mode Frequencies (Hz)
ODIV method

Damping (%)
ODIV method

Frequencies (Hz)
SRA method

Damping (%)
SRA method

1 50)27 0)53 50)42 *

2 68)94 0)22 68)90 0)30
3 70)49 0)88 70)33 0)83
4 83)22 0)38 83)28 0)45
5 95)05 0)44 95)06 0)51
6 104)06 0)97 104)15 1)11
7 109)34 1)32 109)65 1)23
8 125)26 1)01 125)34 0)92
9 132)44 0)71 132)18 0)65

10 135)70 0)75 135)69 0)74
11 139)58 0)84 139)65 0)68
12 145)67 0)73 145)71 0)72
13 151)81 0)41 151)80 0)38
14 158)80 1)41 158)69 1)21
15 164)72 1)34 164)40 1)10
16 169)26 0)54 169)44 0)34
17 173)77 0)81 175)09 0)91
18 18)74 0)56 182)45 0)90
19 188)97 0)73 190)11 0)71
20 200)88 0)58 200)55 0)39
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the determination of the number of modes in a frequency band, using only output
accelerometers, has been developed. Based on a combination of the multivariate minimum
description length theory and the overdetermined instrumental variable scheme, an e$cient
method for AR order determination of a multivariate ARMA model has been developed.
This method is based on the product of the smallest eigenvalues of an overdetermined
instrumental variable product moment matrix and the use of a new criterion. The AR
coe$cients are then derived from a minimization problem under constraints. The modal
parameters are then obtained by the spectral decomposition of the companion matrix.
A numerical example and experimental tests in laboratory have been presented. They have
shown the e!ectiveness of the method in model order estimation and modal parameter
determination. It may interesting to study other instrumental variable selections and to
generalize this method to large industrial structures.
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APPENDIX A. NOMENCLATURE

n degree of freedom of the vibration system
m number of output measurements
p order of the multivariate AR part
q order of the multivariate MA part
f
i

natural frequency of the ith mode
c
i

damping ratio of the ith mode
N number of data points
Dt sampling period
J
MDL

(p@) M.D.L. criterion
n (t) (n]1) vector of displacements
g (t ) (n]1) white noise vector of unmeasured input
y (t) (m]1) observation vector
M

0
(n]n) mass matrix of the system

C
0

(n]n) damping matrix of the system
K

0
(n]n) sti!ness matrix of the system

F (2n]2n) transition matrix
A

i
(m]m) AR coe$cient matrix

B
i

(m]m) MA coe$cient matrix
A (mp]mp) companion matrix
Wp@ (m]m) (p@#1) AR coe$cient matrices
Xp@ (m]N) matrix of coe$cients MA and white noise
Yp@ m(p@#1)]N matrix of data and zeros
z
i

(m]1) an instrumental variable sequence
Z

k
m(k#1)]N extended instrumental variable matrix

R< (i) m]m estimated covariance matrix
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